Skip to content. | Skip to navigation

Personal tools

Sections

Tutelles

logo Inserm      logo cnrslogo ENSL       logo ucb1

 

logo ENSL       logo ucb1

 

 

 

You are here: Home / Teams / Thaunat O - NOPAB / Actualités / Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation

Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation

X.Charmetant, CC.Chen, S.Hamada [...] and O.Thaunat Science Translational Medicine, 2022

Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation

X.Charmetant, CC.Chen, S.Hamada [...] and O.Thaunat
Science Translational Medicine, 2022

 

Abstract

The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient’s allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient’s CD4+ T cells that recognize complexes of recipient’s MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient’s MHC II molecules expressed by B cell receptor–activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient’s circulation; this, in turn, was associated with an early transient anti–MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.